Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2015 Nov; 53(11): 740-746
Article in English | IMSEAR | ID: sea-178583

ABSTRACT

In visceral leishmaniasis (VL), development of alternative safe therapeutic strategy is gaining paramount wherein natural components of plant origin have prominence. We explored Coccinia grandis (L.) Voigt, a medicinal plant known in traditional folk medicine, for its antileishmanial efficacy. SDS-PAGE analysis of the C. grandis leaf extract (Cg-Ex) showed few protein bands about 14-66 kDa among which three (64.8, 55.8 and 15.3 kDa) were identified as serine protease inhibitors by reverse zymography. Since the virulence of Leishmania is also attributed by serine proteases, objective of the present study was to evaluate in vitro antileishmanial activity of Cg-Ex, targeting Leishmania donovani serine protease(s). Inhibition study of Cg-Ex in gelatin-zymogram and spectrophotometric assay revealed its strong inhibitory activity against bovine trypsin rather than chymotrypsin, and also showed significant inhibition of L. donovani serine protease(s). Further, studies with Cg-Ex were extended to estimate its antileishmanial efficacy with half maximal inhibitory concentration (IC50) at 308.0 ± 2.42 µg/ml along with significant morphological alterations. The results have demonstrated the potential of the serine protease inhibitor rich fraction of the C. grandis leaf extract against visceral leishmaniasis.

2.
Indian J Biochem Biophys ; 2013 Oct; 50(5): 363-376
Article in English | IMSEAR | ID: sea-150246

ABSTRACT

Leishmaniasis is a deadly protozoan parasitic disease affecting millions of people worldwide. The treatment strategy of Leishmania infection depends exclusively on chemotherapy till date. But the treatment of the disease is greatly hampered due to high cost, toxicity of the available drugs and more importantly emergence of drug resistance. Hence the potential new drugs are highly needed to combat this disease. The first and foremost step of the drug discovery process is to search and select the putative target in a specific biological pathway in the parasite that should be either unambiguously absent in the host or considerably different from the host homolog. Importantly, Leishmania genome sequences enrich our knowledge about Leishmania and simultaneously reinforce us to identify the ideal drug targets that distinctly exist in the parasite as well as to develop the effective drugs for leishmaniasis. Though the leishmanial research has significantly progressed during the past two decades, the identification of suitable drug targets or development of effective drugs to combat leishmaniasis is far from satisfactory. Enzymatic systems of Leishmania metabolic and biochemical pathways are essential for their survival and infection. Concurrently, it is noteworthy that Leishmania proteases, especially the cysteine proteases, metalloproteases and serine proteases have been extensively investigated and found to be indispensable for the survival of the parasites and disease pathogenesis. Herein, we have discussed the importance of few enzymes, particularly the Leishmania proteases and their inhibitors as promising candidates for potential development of anti-leishmanial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Leishmania/drug effects , Leishmania/physiology , Leishmaniasis/drug therapy , Molecular Targeted Therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
3.
Indian J Biochem Biophys ; 2012 Oct; 49(5): 316-328
Article in English | IMSEAR | ID: sea-143553

ABSTRACT

The number of mammalian calpain protease family members has grown as many as 15 till recent count. Although initially described as a cytosolic protease, calpains have now been found in almost all subcellular locations i.e., from mitochondria to endoplasmic reticulum and from caveolae to Golgi bodies. Importantly, some calpains do not possess the 28 kDa regulatory subunit and have only the 80 kDa catalytic subunit. In some instances, the 80 kDa subunit by itself confers the calpain proteolytic activity. Calpains have been shown to be involved in a number of physiological processes such as cell cycle progression, remodeling of cytoskeletal-cell membrane attachments, signal transduction, gene expression and apoptosis. Recent studies have linked calpain deficiencies or it’s over production with a variety of diseases, such as muscular dystrophies, gastropathy, diabetes, Alzheimer’s and Parkinson’s diseases, atherosclerosis and pulmonary hypertension. Herein, we present a brief overview on some implications of calpains on human health and some diseases.


Subject(s)
Calcium , Calcium-Binding Proteins , Calpain/deficiency , Apoptosis , Disease/etiology , Health , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL